Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hendrik G. Kruger, Melanie Rademeyer,* Thavendran Govender and Vikash Gokul

School of Chemistry, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa

Correspondence e-mail:
rademeyerm@ukzn.ac.za

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.107$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

8,11-Dihydroxypentacycloundecane-8,11-lactam

The title molecule, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$, is a pentacycloundecane cage derivative that exhibits $\mathrm{C}-\mathrm{C}$ bond lengths deviating from the normal values. Neighbouring molecules interact via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming two-dimensional hydrogen-bonded sheets.

Comment

The present study is part of an ongoing investigation of the chemical reactivity and solid-state structures of polycyclic pentacycloundecane (PCU) cage derivatives.

The title compound, (I), was first synthesized by Martins et al. (1993). It forms a hydrate (1:1) complex with water, and the crystal structure of the hydrate was reported by Kruger et al. (1996). The crystal structure of the lactam hydrate was, however, disordered and more precise data for the structure of the lactam were required for our computational studies. The crystal structure of the pure lactam without water is reported here.

(I)

The molecule of (I) consists of a large apolar (lipophilic) hydrocarbon skeleton and more polar dihydroxy and lactam units (Fig. 1). A number of publications have focused on the molecular geometries of PCU cage derivatives (FlippenAnderson et al., 1991; Linden et al., 2005; Kruger et al., 2005), and it has been reported that these compounds exhibit $\mathrm{C}-\mathrm{C}$ bond lengths deviating from the normal value of $1.54 \AA$.

In (I), the $\mathrm{C} 9-\mathrm{C} 10$ bond, as well as the bonds constituting the cyclobutane ring, $\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 2-\mathrm{C} 6, \mathrm{C} 6-\mathrm{C} 7$ and $\mathrm{C} 7-\mathrm{C} 1$, are longer than expected, while the bonds involving atoms C 4 and C11 (Table 1) are shorter than expected. On the other hand, the $\mathrm{C} 8-\mathrm{C} 12$ bond is very short.

In the crystal structure of (I), molecules are arranged to form a bilayer consisting of alternating lipophilic and polar layers. The lipophilic layer contains the PCU cage groups, while the hydroxy, ketone and amino groups constitute the polar layer. In the polar layer, a complex intermolecular hydrogen-bonding network, involving atoms $\mathrm{N}, \mathrm{O} 2$ and O 3 as

Received 22 November 2005
Accepted 29 November 2005
Online 7 December 2005

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the title compound, (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2
A packing diagram of (I), viewed down the b axis. The dashed lines denote hydrogen bonds.
hydrogen-bond donors and atoms O 1 and O 2 as hydrogenbond acceptors, is formed (Table 2). These interactions result in two-dimensional hydrogen-bonded sheets of molecules (Fig. 2).

Experimental

The PCU lactam was synthesized as described by Martins et al. (1993) and recrystallized from dioxane.

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$
$M_{r}=219.23$
Monoclinic, $C 2 / c$.
$a=22.0040$ (11) \AA
$b=6.3299$ (3) A
$c=13.6153$ (7) \AA
$\beta=95.426(3)^{\circ}$
$V=1887.88(16) \AA^{3}$
$Z=8$
$D_{x}=1.543 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 957
reflections
$\theta=3.0-28.3^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.38 \times 0.29 \times 0.29 \mathrm{~mm}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
7588 measured reflections
2354 independent reflections
1973 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-26 \rightarrow 29$
$k=-7 \rightarrow 8$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.107$
$S=1.06$
2354 reflections
157 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected bond lengths (\AA).

C12-C8	$1.5189(16)$	C9-C5	$1.5539(16)$
C8-C9	$1.5442(16)$	C9-C10	$1.5719(15)$
C8-C7	$1.5455(17)$	C5-C4	$1.5365(17)$
C7-C1	$1.5654(15)$	C5-C6	$1.5430(18)$
C7-C6	$1.5655(17)$	C6-C2	$1.5738(16)$
C1-C11	$1.5341(17)$	C2-C3	$1.5489(17)$
C1-C2	$1.5588(17)$	C3-C4	$1.5376(17)$
C11-C10	$1.5368(16)$	C3-C10	$1.5431(16)$

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N}-\mathrm{H} 1 H \cdots \mathrm{O} 1^{\text {i }}$	0.92 (2)	1.99 (2)	2.9094 (13)	174 (2)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{H} \cdots \mathrm{O}^{1 i}$	0.83 (2)	2.19 (2)	2.9214 (13)	147 (2)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{H} \cdots \mathrm{O} 1$	0.83 (2)	2.24 (2)	2.7213 (12)	118 (2)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{H} \cdots \mathrm{O} 2^{\text {iii }}$	0.89 (2)	1.92 (2)	2.7844 (13)	164 (2)

Atoms $\mathrm{H} 1 \mathrm{H}, \mathrm{H} 2 \mathrm{H}$ and H 3 H were located in a difference map and refined isotropically $[\mathrm{N}-\mathrm{H}=0.924$ (17) \AA and $\mathrm{O}-\mathrm{H}=0.83$ (2) and 0.89 (2) \AA]. The remaining H atoms were positioned geometrically $\left[\mathrm{C}-\mathrm{H}=1.00(\mathrm{CH})\right.$ and $\left.0.99 \AA\left(\mathrm{CH}_{2}\right)\right]$ and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Bruno et al., 2002) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

organic papers

The authors thank the Jan Boeyens Structural Chemistry Laboratoryof the University of the Witwatersrand, South Africa, for the structural analysis.

References

Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W. Jr, Walters, T. R., Marchand, A., Dave, P. R. \& Arney, B. E. Jr (1991). Acta Cryst. C47, $813-$ 817.

Kruger, H. G., Martins, F. J. C., Viljoen, A. M., Boeyens, J. C. A., Cook, L. M. \& Levendis, D. C. (1996). Acta Cryst. B52, 838-841.
Kruger, H. G., Rademeyer, M. \& Ramdhani, R. (2005). Acta Cryst. E61, o3968-o3970.
Linden, A., Romanski, J., Mloston, G. \& Heimgartner, H. (2005). Acta Cryst. C61, o221-o226
Martins, F. J. C., Viljoen, A. M., Kruger, H. G. \& Joubert, J. A. (1993). Tetrahedron, 49, 9573-9580.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

